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Interferometric single-shot parity 
measurement in InAs–Al hybrid devices

The fusion of non-Abelian anyons is a fundamental operation in measurement-only 
topological quantum computation1. In one-dimensional topological superconductors 
(1DTSs)2–4, fusion amounts to a determination of the shared fermion parity of Majorana 
zero modes (MZMs). Here we introduce a device architecture5 that is compatible with 
future tests of fusion rules. We implement a single-shot interferometric measurement 
of fermion parity6–11 in indium arsenide–aluminium heterostructures with a gate- 
defined superconducting nanowire12–14. The interferometer is formed by tunnel- 
coupling the proximitized nanowire to quantum dots. The nanowire causes a 
state-dependent shift of the quantum capacitance of these quantum dots of up to 1 fF. 
Our quantum-capacitance measurements show flux h/2e-periodic bimodality with  
a signal-to-noise ratio (SNR) of 1 in 3.6 μs at optimal flux values. From the time traces 
of the quantum-capacitance measurements, we extract a dwell time in the two 
associated states that is longer than 1 ms at in-plane magnetic fields of approximately 
2 T. We discuss the interpretation of our measurements in terms of both topologically 
trivial and non-trivial origins. The large capacitance shift and long poisoning time 
enable a parity measurement with an assignment error probability of 1%.

To make use of a topological phase for quantum computation, it is 
crucial to manipulate and measure the topological charge. This can 
be achieved through protected operations such as braiding and fusing 
non-Abelian anyons, which offer exponential suppression of errors 
induced by local noise sources and a discrete set of native opera-
tions15–17. Protocols for measurement-only topological quantum com-
putation simplify these operations, reducing them to fusion alone1,5. 
This fundamental measurement is sufficient to enact all topologi-
cally protected operations. New error-correction schemes have been 
developed to take advantage of these operations18–20. The robustness 
against errors and simplicity of control offered by this approach make 
measurement-based topological qubits a promising path towards 
utility-scale quantum computation, in which managing the interactions 
of millions of qubits is necessary21–24.

1DTSs2–4 are a promising platform for building topological qubits. 
Quantum information is stored in the fermion parity of MZMs localized 
at the ends of superconducting wires and projective measurements 
of the fermion parity are used to process quantum information and 
perform qubit-state readout25,26. The fermion parity shared by a pair of 
MZMs can be determined through an interferometric measurement3,6–9. 
Several conceptual designs for topological qubits incorporate such 
interferometers5,10,11,27. These proposals require time-resolved measure-
ments of the fermion parity in the interference loop, which cannot be 
accomplished with dc transport measurements of the time-averaged 
fermion parity28.

In this paper, we demonstrate such a time-resolved measurement, 
thereby validating a necessary ingredient of topological quantum 
computation. The measurement technique is based on examining the 
quantum capacitance CQ of a quantum dot coupled to the nanowire5,29–31 

(Fig. 1) and allows determination of the parity in a single shot. We achieve 
an assignment error probability of 1% for optimal measurement time. By 
itself, this measurement does not unequivocally distinguish between 
MZMs in the topological phase and fine-tuned low-energy Andreev 
bound states in the trivial phase32–40 but it does require the low-energy 
state to be supported at both ends of the wire and very weakly coupled 
to other low-energy fermionic states. Moreover, it provides a measure-
ment of the state’s energy with single-μeV resolution. These features of 
the measurement strongly constrain the nature of the low-energy state.

Device design and setup
We introduce a device architecture enabling projective measurements 
of fermion parity5,10,11,27,29,41,42. The device comprises two primary com-
ponents, as illustrated in Fig. 1. The first component is a nanowire that 
will have MZMs at its ends if it is in a 1DTS state. The second component 
consists of quantum dots, which are designed to couple pairs of MZMs 
in an interferometric loop.

The nanowire in this device is based on a gated superconductor–
semiconductor heterostructure and defined by a narrow Al strip that 
suppresses depletion underneath it12–14. Device fabrication and details 
of the heterostructure design are discussed in Sections 1.2 and 1.3 of 
the Supplementary Information, respectively. The Al strip is grounded 
and continuous throughout, but there are separate ‘plunger’ gates that 
define five sections of the wire. One of them is shown schematically 
in Fig. 1c and all five are visible in the scanning electron microscopy 
image in Fig. 2b. Although there are no breaks in the Al, the plunger 
gates independently control the density in each section. (See Supple-
mentary Fig. 1 and Section 1.1 of the Supplementary Information for a 

https://doi.org/10.1038/s41586-024-08445-2

Received: 5 March 2024

Accepted: 22 November 2024

Published online: 19 February 2025

Open access

 Check for updates

Microsoft Azure Quantum* 

*A list of authors and their affiliations appears at the end of the paper. 

https://doi.org/10.1038/s41586-024-08445-2
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-08445-2&domain=pdf


652  |  Nature  |  Vol 638  |  20 February 2025

Article

complete device schematic and gate-naming convention; throughout 
the paper, Vi refers to the dc voltage applied to gate i.) A topological 
qubit would require tuning the second and fourth segments, each of 
length L ≈ 3 μm, into the 1DTS state, whereas the other three would 
be fully depleted underneath the Al strip (see Supplementary Fig. 1 
for details). Here we focus on the second section shown in Fig. 1c and 
implement a parity measurement using its associated interferometer.

Our readout circuit is based on dispersive gate sensing of a triple 
quantum dot interferometer (TQDI): three electrostatically defined 
quantum dots that, together with the second nanowire section, form 
a loop threaded by a flux, Φ (Fig. 1a,c). We control Φ by varying the 
out-of-plane magnetic field, B⊥. The TQDI has two smaller dots (dots 1 
and 3), which serve as tunable couplers providing control over, respec-
tively, the tunnel couplings tL and tR. The smaller dots are connected to 
the ends of the 1DTS through tunnel couplings tmi, in which i = 1, 2, and 
to the long quantum dot (dot 2) that connects to dot 1 and dot 3 through 
tunnel couplings t12 and t23, respectively. The quantum capacitance, CQ, 
of dot 2 is read out through dispersive gate sensing using an off-chip 
resonator circuit in a reflectometry setup43; a detailed description is 
given in Section 1.4 of the Supplementary Information.

We have developed an rf-based quantum dot–MZM tuning protocol 
that we use to balance the arms of the interferometer. We measure CQ 

in a configuration in which one of the small dots is maximally detuned, 
effectively interrupting the loop. Comparing these measurements 
with simulations, we extract the couplings t12, t23, tm1 and tm2 (see Sec-
tion 2.5 of the Supplementary Information). This measurement pro-
tocol expands on the dc transport techniques proposed in refs. 44,45 
and demonstrated in ref. 46. Our rf-based protocol offers μeV-level 
resolution for coupling extraction, which enables tuning the effective 
dot-to-wire couplings tL and tR. Once we have determined the appropri-
ate voltages for quantum dots 1 and 3, we proceed with interferometry 
measurements. Section 4 of the Supplementary Information contains 
further details of the tune-up procedure.

Fermion parity measurement and interpretation
To measure a time record of the fermion parity, we tune up the TQDI 
and perform a sequence of nearly 1.5 × 104 consecutive measurements 
of the resonator response, each with an integration time of 4.5 μs, 
thereby recording a time trace of total length 67 ms. To improve visibil-
ity and compare with theoretical predictions, we downsample the time 
trace by averaging over a 90-μs window. By comparing the measured 
resonator response with a reference trace (taken with dot 2 in a Coulomb 
valley), we convert it to a CQ

∼  record, which includes a field-dependent 
shift of CQ that cancels out of ΔCQ (see equation (28) in the Supplemen-
tary Information).

We sweep VQD2 to find charge transitions in dot 2 and, because the 
normal to the plane of the device is only slightly offset (<1°) from the x 
axis of the magnet, we sweep the x component of the magnetic field Bx 
in steps of 0.14 mT to study the dependence on Φ. Our Bx sweep range 
is offset from 0 so that B⊥ (which contains a contribution from Bz) is 
swept symmetrically around 0. We use the topological gap protocol 
(TGP)14 to select an in-plane field B∥ and a wire plunger gate voltage VWP1 
range (indicated, respectively, in Fig. 1a,c) for our measurements, as 
discussed in Section 4 of the Supplementary Information. The readout 
system parameters that we achieve are not strongly dependent on 
these values. For measurement A1 of device A, the relevant regime is 
B∥ ≈ 1.8 T and VWP1 ≈ −1.832 V.

For appropriately tuned quantum dot plungers, in particular for 
VQD2 close to resonance, the measured ∼CQ record exhibits switches 
between two capacitance values that differ by a ΔCQ(Bx) that oscillates 
as a function of Bx. At some Bx, there are no visible switches, as in Fig. 3a, 
so ΔCQ(Bx) vanishes. At generic Bx, there is a clear random telegraph 
signal (RTS), which is shown in Fig. 3d for the Bx that corresponds to 
maximal ΔCQ(Bx). From a histogram of all CQ

∼  observed within this time 
trace, we extract an achieved SNR of 5.01 in 90 μs (Fig. 3e,f) or, equiv-
alently, an SNR of 1 in 3.6 μs (see Section 3.3 of the Supplementary 
Information). As demonstrated in Fig. 3g, the intervals between 
switches follow an exponential distribution with a characteristic time 
τRTS ≈ 2 ms. By plotting histograms of the CQ

∼  time traces as a function 
of Bx, as shown in Fig. 3h, we observe a Bx-dependent bimodal distri
bution of ∼CQ values with peaks separated by ΔCQ(Bx). The oscillation 
period of ΔCQ(Bx) is 1.9 ± 0.1 mT, which is consistent with the expected 
flux of h/2e through the interference loop in this device geometry. We 
interpret the RTS in CQ as originating from switches of the fermion 
parity in the wire; see Section 7.3 of the Supplementary Information 
for details.

The visibility and phase of the oscillations vary between successive 
charge transitions in dot 2. We illustrate this by showing the kurtosis 
K(CQ) (which detects bimodality; see Section 3.2 of the Supplementary 
Information) of the ∼CQ time traces for several different charge transi-
tions in Fig. 3i. A similar difference in the visibility of flux-induced oscil-
lations across different charge transitions was recently observed in a 
double quantum dot interferometer experiment47. In Section 6 of the 
Supplementary Information, we discuss oscillations with different 
periods that are observed at other points in the parameter space of the 
device.
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Fig. 1 | Device design for interferometric fermion parity measurement.  
a, Idealized model of the system. A nanowire tuned into a 1DTS state hosts MZMs 
at its ends, depicted by stars. A quantum dot is tunably coupled to the MZMs by 
tunnel couplings tL and tR, forming an interferometer, which is sensitive to the 
magnetic flux Φ enclosed by the dashed line and the combined fermion parity  
Z of the dot–MZMs system. Poisoning by a quasiparticle (purple circle) flips the 
parity. b, Example energy spectra of the interferometer with total parity Z = −1 
(red) and Z = +1 (blue) in the vicinity of the avoided crossing between the states 
with N and N + 1 electrons on the dot, as a function of the plunger voltage on the 
quantum dot; see equation (2). c, Gate layout for the interference loop formed 
by the triple quantum dot and the gate-defined nanowire (light green). Voltage 
VWP1 is applied to the wire plunger gate (yellow) and voltage VQD2 is applied  
to the dot 2 plunger gate (purple). The effective couplings tL and tR of panel  
a depend on the couplings tm1, t12 and tm2, t23 and detuning of quantum dots 1 and 
3, respectively. Quantum dot 2 is capacitively coupled to an off-chip resonator 
chip for dispersive gate sensing and CQ measurement, which also includes a bias 
tee for applying dc voltages.
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We support this interpretation by reproducing our results with quan-
tum dynamics simulations that incorporate rf drive power, charge noise 
and temperature. To build intuition for those simulations, we use an 
idealized model (see Section 2.2 of the Supplementary Information) 
subject to the following assumptions (which we will later relax): the wire 
is in the topological phase and there are no sub-gap states other than 
the MZMs; the charging energy and level spacing in the dots are much 
greater than the temperature; dots 1 and 3 are sufficiently detuned 
that their influence is fully encapsulated in the effective couplings tL  
and tR to MZMs at the ends of the wire (see Fig. 1a); and the drive fre-
quency and power are both negligible. In this limit, the quantum capaci-
tance as a function of the total fermion parity in the quantum dot–wire 
system, Z, is given by
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in which ED is the detuning from the charge-degeneracy point, α is the 
lever arm of the plunger gate to the dot, EM is the MZM energy splitting 
and T is the temperature. The net effective tunnelling that results from 
the interference between different trajectories from the dot to the 
MZMs and back, tC(Z, ϕ), is
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Here ϕ is the phase difference between tL and tR, which is controlled 
by the magnetic flux Φ through the interference loop created by the 
dot, the wire and the tunnelling paths between them according to 
ϕ = 2πΦ/Φ0 + ϕ0, in which Φ0 = h/e and ϕ0 is a flux-independent offset. 
To capture the extent to which CQ can be used to discriminate between 
Z = ±1, it is convenient to introduce

C ϕ C Z ϕ C Z ϕΔ ( ) = ( = 1, ) − ( = − 1, ) . (3)Q Q Q∣ ∣

The interferometer must be well balanced tL ≈ tR for ΔCQ to be large 
according to equation (1). When EM = 0, ΔCQ exhibits maxima along the 
ED = 0 line, with flux periodicity h/2e.
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Fig. 2 | Material stack and electron micrograph. a, Cross-section of the gate-defined superconducting nanowire device design. b, Scanning electron microscopy 
image with the aluminium strip (blue), first gate layer (yellow) and second gate layer (purple) indicated in false colour. Scale bar, 1 μm.
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Fig. 3 | Experimental demonstration of fermion parity measurements. 
Measurements in device A (measurement A1) in the (B∥, VWP1) parameter regime 
identified through the tune-up procedure discussed in the main text and 
Section 4 of the Supplementary Information; specifically, VWP1 = −1.8314 V and 
B∥ = 1.8 T. The raw rf signal has been converted to complex CQ

∼
 by the method 

described in Section 3.1 of the Supplementary Information. a,d, Time traces at 
Bx values corresponding to minimal (panel a) and maximal (panel d) values of 
ΔCQ for a fixed choice of VQD2 close to charge degeneracy. b,e, Histograms of 
complex 

∼
CQ for the time trace shown in panels a and d. c,f, Histograms of the 

real part CRe Q
∼

 with Gaussian fits for an extraction of the SNR = δ/(σ1 + σ2) = 5.01, 
the details of which are given in Section 3.3 of the Supplementary Information. 

g, Histogram of dwell times aggregated over all values of Bx, in which the signal 
shows bimodality. Fitting to an exponential shows that the up and down dwell 
times agree to within the standard error on the fits: 2.05 ± 0.07 ms and 
2.02 ± 0.07 ms, respectively. h, Histogram of 

∼
CQ values as a function of Bx, 

showing clear bimodality that is flux-dependent with period h/2e. The vertical 
arrows indicate the Bx values at which the time traces in panels a and d were 
taken. i, Kurtosis in the measured quantum capacitance, K C(Re )Q

∼
, of dot 2 as  

a function of Bx (which controls Φ) and ΔVQD2, the change in dot plunger gate 
voltage from the starting point of the scan (which controls the dot 2 detuning). 
The dashed red rectangle indicates the ΔVQD2 value at which the data in the 
other panels were taken.
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For detailed comparison with experiments, we use the methods 
discussed in Sections 2.4 and 2.5 of the Supplementary Information 
to simulate a more complete model of the device and readout chain 
that includes the full triple-dot system, incoherent coupling to the 
environment (using parameters inferred from separate measurements; 
see Sections 9 and 10 of the Supplementary Information) and meas-
urement backaction. Crucially, this approach allows us to incorporate 
different noise sources in a systematic and quantitative way without any 
free parameters. The simulated dynamical CQ, defined in Section 2.3 of 
the Supplementary Information, is shown in Fig. 4. The CQ histograms 
in Fig. 4a reveal two h/e-periodic branches (one shown in red and the 
other in blue), associated with the two parities of the coupled system. 
If the fermion parity Z were perfectly conserved, then the device would 
remain in one of the two parity eigenstates and the Φ dependence would 
follow either the blue or the red trace in Fig. 4a. However, Z should 
fluctuate on a timescale given by the quasiparticle poisoning time 
τqpp. Hence, in traces over times longer than τqpp, a bimodal distribu-
tion of CQ values is expected, that is, both the blue and red traces in 
Fig. 4a. Consequently, the kurtosis K(CQ) exhibits minima at which ΔCQ 
is peaked, as shown in Fig. 4b, and time traces taken at these points will 
exhibit a telegraph signal composed of switches between the values 
CQ(1, ϕ) and CQ(−1, ϕ). Comparing Fig. 4 with Fig. 3h,i, we find good 
overall agreement of both the histograms and the kurtosis. We find a 
maximum ΔCQ(Φ) ≈ 1 fF, which is consistent with our measurements 
in Fig. 3. This agreement extends to other parameter regimes, such 
as when the interferometer is poorly balanced or the splitting EM is 
sizeable, as discussed in Section 6 of the Supplementary Information.

A second measurement of device A and a measurement of a second 
device (device B) give results in qualitative agreement with those of 
measurement A1, demonstrating the reproducibility of the observed 
phenomena (Section 5 of the Supplementary Information). We have 
tested our interpretation by: (1) disconnecting the dots from the wire; 
(2) measuring at fields of 0.8 T below the region identified by TGP;  
(3) intentionally injecting quasiparticles into the superconductor and 
observing the effect on τRTS; and (4) comparing the quasiparticle density 
measured in a separate test structure with that inferred according to 
the hypothesis that τqpp = τRTS ≈ 2 ms (Section 7 of the Supplementary 
Information).

By extending the model introduced above, we have analysed the 
quasi-MZM scenario discussed in previous works37–39,48. We introduce 
an extra pair of ‘hidden’ Majorana modes that are weakly coupled to 
each other and to the visible MZMs, which themselves are coupled to 
quantum dots 1 and 3. Together, the hidden and visible MZMs form a 
trivial low-energy state at each end of the wire. This scenario can occur 
in the trivial phase, in which it requires some fine-tuning to make the 
couplings small. In Section 2.7 of the Supplementary Information, 
we show that the hidden Majorana modes suppress ΔCQ owing to fast 
fermion tunnelling between them and the visible MZMs. This effect 
completely washes out the flux-dependent bimodality unless the cou-
pling between the ‘hidden’ Majorana modes and the visible MZMs is 
less than 1 neV or the hidden Majorana modes are effectively gapped 
out, as shown in Supplementary Fig. 4.

Discussion and outlook
We have presented dispersive gate-sensing measurements of the quan-
tum capacitance in InAs–Al hybrid devices using a system architec
ture that can be adapted to other materials platforms49,50. After tuning 
the nanowire density and in-plane magnetic field into the parameter 
regime identified by the TGP14 and balancing the interferometer formed 
by the nanowire and the quantum dots, we observed a flux-dependent 
bimodal RTS in the quantum capacitance, which we interpret as switches 
of the parity of a fermionic state in the wire. We have fit these data to a 
model in which the fermion parity is associated with two MZMs localized 
at the opposite ends of a 1DTS and find good agreement. These measure-
ments do not, by themselves, determine whether the low-energy states 
detected by interferometry are topological. However, our data tightly 
constrain the allowable energy splittings in models of trivial Andreev 
states.

In conclusion, our findings represent substantial progress towards 
the realization of a topological qubit based on measurement-only oper-
ations. Single-shot fermion parity measurements are a key requirement 
for a Majorana-based topological quantum computation architecture.
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